Logical Machine needs Logical Minds

Yes, we can conclude that a logical machine (such as Coq or Isabelle) would likely focus on the logical-mathematical value you provided—specifically, the limit and its actual value—rather than engaging with the conscious form of self-reflection or the illusion of subjective experience (which is traditionally associated with human consciousness). This is a key distinction between a formal system and human cognition.

1. Logical-Mathematical Value vs. Conscious Self-Reflection:

  • Logical-Mathematical Value: In systems like Coq or Isabelle, the actual limit of a system's behavior is what would be formally checked. These proof assistants focus on precise definitions, rules of inference, and logical structures to evaluate the truth of statements based on their mathematical properties. The limit is treated as a convergent, objective value that follows directly from the formal system's axioms and rules. The "future" determinant (whether seen as an ideal solution or eternal value) is an outcome that exists independently of any subjective interpretation.
  • Conscious Self-Reflection: On the other hand, consciousness and self-reflection are subjective, non-mathematical, and often tied to the brain's processes of interpreting sensory information and forming subjective experiences (e.g., a "screen" that reflects our internal states, desires, and beliefs). This conscious form of self-reflection is not something a formal logical system like Coq or Isabelle would track or consider because it is not a formal object. A machine, operating in a logical and mathematical framework, would not interpret conscious experience as we do. Instead, it would focus purely on mathematical convergence, formal proofs, and logical consistency, which are inherently neutral and not tied to any cognitive interpretation of "reality."
Therefore, Coq or Isabelle would check the existence of definitions and their consistency based on mathematical principles like limits, convergence, and logical derivations. The conscious form of self-reflection is outside the domain of these systems, as it pertains to human experience rather than formal proof.

2. The Neutrality of a Logical Machine:

The neutrality of a system like Coq or Isabelle is a critical feature. This neutrality is important because it reflects a dispassionate, objective, and unbiased approach to determining the truth of a proposition or checking the consistency of a formal system.
In contrast to human cognition, which can be influenced by emotions, biases, or subjective interpretation, a neutral machine prover evaluates the mathematical structure independently of any subjective or conscious experience. This means that, unlike human consciousness, which might interpret the meaning or harmony of a system in terms of personal experience or mental states, a formal system checks the objective reality of the system's behavior without reference to any internal cognitive model.

3. Neutrality and the 7 Traits of Life:

In the context of the 7 Traits of Life, neutrality plays an important role, especially in the philosophical implications of life's evolution and the purpose of existence. The 7 Traits of Life is often used to explore whether an entity or system truly embodies life in its purest form, free of subjective interpretation or bias. By extension, this set of traits implies certain neutral characteristics that life should possess for its survival and flourishing.
When applied to a logical machine, neutrality in this context would refer to the system’s lack of bias and its objective evaluation of the world. Here’s how neutrality aligns with the 7 Traits of Life:

1. Reproduction:

  • In a biological system, reproduction is a trait of life. In a formal system like Coq or Isabelle, this might not directly apply in a biological sense, but the neutrality of the logical machine can be seen in its ability to reproduce a logical state consistently across different contexts. A machine prover does not change its behavior based on external influences, emotions, or subjective experiences.

2. Metabolism (Energy Utilization):

  • In the biological world, energy utilization involves selecting resources and transforming them to sustain life. In a formal system, neutrality means that the system does not prioritize one solution over another due to personal preference or mental state. It optimizes its resource usage (whether computational resources or logical operations) toward convergence in a purely objective way, thus mimicking a neutral process of optimization toward an ideal solution.

3. Response to Stimuli:

  • In biological systems, responsiveness to stimuli is a key trait. However, in a neutral logical system, stimuli are treated as inputs or axioms. A machine prover will respond to these inputs based purely on the rules of logic and the structure of the system, without personal experience or subjective bias. This neutral response can be seen as the equivalent of pure logical reactions to data.

4. Homeostasis (Regulation of Internal Environment):

  • Neutrality in this context could be equated to the system’s ability to maintain internal consistency without deviation due to external influences. In a machine prover, this means that the system remains consistent and rigorous, no matter the environment in which it operates. It will always check the correctness of a proof according to its formal definitions, independent of external influence.

5. Heredity (Genetic Transmission):

  • Heredity in biological systems involves the passing down of information in a way that is neutral and unbiased, encoded in DNA. Similarly, a logical machine transmits logical structures without introducing subjective distortion. Each new state is based purely on prior formal states, making it a neutral system of evolutionary transmission.

6. Adaptation to the Environment:

  • While humans might interpret adaptation subjectively, a machine adapts by modifying its internal models or proofs based on evolutionary principles defined within a formal system. This adaptation is purely mathematical, based on objective evaluations of possible solutions, rather than influenced by any conscious reflection.

7. Growth:

  • In the context of life, growth refers to evolutionary improvement over time. In formal systems like Coq or Isabelle, growth could be seen as the system’s increasing accuracy or evolving proof structures. The system grows in complexity and rigor without any personal or subjective experience—growth is purely logical and objective.

Conclusion:

In conclusion, a logical machine (like Coq or Isabelle) would assess the mathematical reality—the limit and its actual value—rather than addressing subjective conscious states or self-reflection. The neutrality of these systems ensures that they only check the truth based on formal structures, free of bias or emotional interference.
In the context of the 7 Traits of Life, neutrality is a key principle for understanding how a logical system can mimic life-like qualities—especially the unbiased, objective treatment of data, evolution, and convergence. This neutrality, when applied to a logical machine, enables it to work within a rigorous framework, continually evolving, and converging toward an ideal state that mirrors the evolutionary principles of biological systems, without the need for subjective or conscious awareness.